折射反射、菲涅尔方程

$\quad\\$

反射与折射定律

$\quad\\$

记$n_r=\frac{n_t}{n_i}$,$\theta_i$,$\theta_r$和$\theta_t$分别为入射角,反射角和透射角

$$单光子动量\\
\quad\\
\boldsymbol{p}=\hbar \boldsymbol{k}=\frac{\hbar\omega}{\boldsymbol{v}}=\frac{n\hbar\omega}{\boldsymbol{c}}\propto n\\
\quad\\
水平方向动量守恒\\
\quad\\
\left\lbrace\begin{array}&\sin\theta_i&=&n_r\sin\theta_t\\
\sin\theta_i&=&\sin\theta_r
\end{array}\right.
$$

$\quad\\$

Fresnel方程

$\quad\\$

$$n_r=\sqrt{\varepsilon_r\mu_r}\\
\quad\\
反射折射定律\\
\quad\\
\theta_i=\theta_r\\
\quad\\
\frac{\sin\theta_i}{\sin\theta_t}=n_r\\
\quad\\
p光边界条件为平行界面E连续,垂直界面D连续\\
\quad\\
E_i \cos \theta_i =E_t \cos \theta_t +E_r \cos \theta_r\\
\quad\\
D_i \sin \theta_i =D_t \sin \theta_t -D_r \sin \theta_r\\
\quad\\
s光边界条件为平行界面H连续,垂直界面B连续\\
\quad\\
H_i \cos \theta_i =H_t \cos \theta_t +H_r \cos \theta_r\\
\quad\\
B_i \sin \theta_i =B_t \sin \theta_t -B_r \sin \theta_r\\
\quad\\
可得线性方程组\\
\quad\\
\left\lbrace\begin{array} &\cos{\theta_t}\; t_p&+\cos{\theta_i}\; r_p& & &=&\cos{\theta_i}\\
\frac{n_r^2}{\mu_r}\sin\theta_t\; t_p&-\sin\theta_i\; r_p& & &=&\sin{\theta_i}\\
& &\frac{n_r}{\mu_r}\cos{\theta_t}\; t_s&+\cos{\theta_i}\; r_s&=&\cos{\theta_i}\\
& &n_r\sin{\theta_t}\; t_s&-\sin{\theta_i}\; r_s&=&\sin{\theta_i}\end{array}\right.\\
\quad\\
解得\\
\quad\\
\left\lbrace\begin{array}&r_s&=&-\frac{\frac{n_r}{\mu_r}\sin \theta_i \cos\theta_t-n_r\sin \theta_t \cos\theta_i}{\frac{n_r}{\mu_r}\sin \theta_i \cos\theta_t+n_r\sin \theta_t \cos\theta_i}\\
r_p&=&-\frac{\sin \theta_i \cos\theta_t-\frac{n_r^2}{\mu_r}\sin \theta_t \cos\theta_i}{\sin \theta_i \cos\theta_t+\frac{n_r^2}{\mu_r}\sin \theta_t \cos\theta_i}\\
t_s&=&+\frac{2\sin \theta_i \cos\theta_i}{\frac{n_r}{\mu_r}\sin \theta_i \cos\theta_t+n_r\sin \theta_t \cos\theta_i}\\
t_p&=&+\frac{2\sin \theta_i \cos\theta_i}{\sin \theta_i \cos\theta_t+\frac{n_r^2}{\mu_r}\sin \theta_t \cos\theta_i}\\
\end{array}\right.\\
\quad\\
若\mu_r=1\\
\quad\\
\left\lbrace\begin{array}&r_s&=&-\frac{\sin(\theta_i-\theta_t)}{\sin(\theta_i+\theta_t)}\\
r_p&=&+\frac{\tan(\theta_i-\theta_t)}{\tan(\theta_i+\theta_t)}\\
t_s&=&+\frac{2\sin \theta_t \cos\theta_i}{\sin(\theta_i+\theta_t)}\\
t_p&=&+\frac{2\sin \theta_t \cos\theta_i}{\sin(\theta_i+\theta_t)\cos(\theta_i-\theta_t)}\\
\end{array}\right.\\
\quad\\
若\varepsilon_r=1,即\mu_r=n_r^2\\
\quad\\
\left\lbrace\begin{array}&r_s&=&+\frac{\tan(\theta_i-\theta_t)}{\tan(\theta_i+\theta_t)}\\
r_p&=&-\frac{\sin(\theta_i-\theta_t)}{\sin(\theta_i+\theta_t)}\\
t_s&=&+\frac{2\sin \theta_i \cos\theta_i}{\sin(\theta_i+\theta_t)\cos(\theta_i-\theta_t)}\\
t_p&=&+\frac{2\sin \theta_i \cos\theta_i}{\sin(\theta_i+\theta_t)}\\
\end{array}\right.\\
\quad\\
$$

$\quad\\$

全内反射与隐失波

$\quad\\$

由折射定律$\frac{\sin\theta_i}{\sin\theta_t}=n_r$有,当光线从光密介质射向光疏介质且入射角大于临界角,即$\sin\theta_i>n_r$时,$\theta_t=\frac{\pi}{2}+i\gamma$,$
k_t=n_r k_i$,$\boldsymbol{k_t}=k_{t}\sin\theta_t \hat{x}+k_{t}\cos\theta_t\hat{y}$,光矢垂直界面方向分量为纯虚数,非平面波,即出现所谓隐失波

$$\begin{aligned}E_t&=E_{i0}\times[t_p \;or\;t_s]e^{i(\boldsymbol{k_t\cdot r}-\omega t)}\\
\quad\\
&=E_{t0}e^{i(k_t\sin\theta_t x+k_t\cos\theta_t y-\omega t)}\\
\quad\\
&=E_{t0}e^{-\beta y} e^{i(k_i\sin\theta_i x-\omega t)}\end{aligned}\\
\quad\\
其中\beta=k_i\sqrt{\sin^2\theta_i-n_r^2}$$

$\quad\\$

参考与引用来源

$\quad\\$

赫克特光学第五版

当前网速较慢或者你使用的浏览器不支持博客特定功能,请尝试刷新或换用Chrome、Firefox等现代浏览器