偏振态、偏振光学元件

$\quad\\$

椭圆偏振光

$\quad\\$

两束偏振方向分别在$x$、$y$轴上的同频同速沿$z$轴传播的线偏振光叠加后可得到椭圆偏振光

$$
\varphi_x=E_x\cos(kx-\omega t-\varepsilon/2)\\
\quad\\
i\varphi_y=iE_y\cos(kx-\omega t+\varepsilon/2)\\
\quad\\
\varphi=\varphi_x+i\varphi_y\\
\quad\\
\small\begin{aligned}\left(\frac{\varphi_x}{E_x}\right)^2+\left(\frac{\varphi_y}{E_y}\right)^2
&=\cos^2(kx-\omega t-\varepsilon/2)+\cos^2(kx-\omega t+\varepsilon/2)\\
\quad\\
&=2\cos^2(kx-\omega t)\cos^2(\frac{\varepsilon}{2})+2\sin^2(kx-\omega t)\sin^2(\frac{\varepsilon}{2})\\
\quad\\
&=2\cos^2(kx-\omega t)(\cos^2(\frac{\varepsilon}{2})-\sin^2(\frac{\varepsilon}{2}))+2\sin^2(\frac{\varepsilon}{2})\\
\quad\\
&=2\cos^2(kx-\omega t)\cos\varepsilon+2\sin^2(\frac{\varepsilon}{2})\\
\quad\\
&=[1+\cos(2kx-2\omega t)]\cos\varepsilon+2\sin^2(\frac{\varepsilon}{2})\\
\quad\\
&=\cos(2kx-2\omega t)\cos\varepsilon+1\\
\quad\\
&=[2\cos(kx-\omega t-\varepsilon/2)\cos(kx-\omega t+\varepsilon/2)-\cos\varepsilon]\\
\quad\\
&\qquad\cos\varepsilon+1\\
\quad\\
&=2\left(\frac{\varphi_x}{E_x}\right)\left(\frac{\varphi_y}{E_y}\right)\cos\varepsilon+\sin^2\varepsilon\\
\end{aligned}\\
\quad\\
\small即\\
\quad\\
\left(\frac{\varphi_x}{E_x}\right)^2+\left(\frac{\varphi_y}{E_y}\right)^2
-2\frac{\varphi_x}{E_x}\frac{\varphi_y}{E_y}\cos\varepsilon
=\sin^2\varepsilon\\
\quad\\
\small二次型相伴矩阵为\left(\begin{array}&\frac{1}{E_x^2}&-\frac{\cos\varepsilon}{E_x E_y}&0\\
-\frac{\cos\varepsilon}{E_x E_y}&\frac{1}{E_y^2}&0\\
0&0&-\sin^2\varepsilon
\end{array}\right)\\
\quad\\
I_1=\frac{1}{E_x^2}+\frac{1}{E_y^2}\qquad I_2=\frac{\sin^2\varepsilon}{E_x^2 E_y^2}\qquad I_3=-\frac{\sin^4\varepsilon}{E_x^2 E_y^2}\\
\quad\\
\small特征方程为\lambda^2-(\frac{1}{E_x^2}+\frac{1}{E_y^2})\lambda+\frac{\sin^2\varepsilon}{E_x^2 E_y^2}=0\\
\quad\\
\small解得特征根\lambda=\frac{\frac{1}{E_x^2}+\frac{1}{E_y^2}\pm\sqrt{\frac{1}{E_x^4}+\frac{2\cos2\varepsilon}{E_x^2E_y^2}+\frac{1}{E_y^4}}}{2}\\
\quad\\
\small曲线简化方程为椭圆方程\\
\quad\\
\lambda_负X^2+\lambda_正Y^2-\sin^2\varepsilon=0\\
\quad\\
\small原坐标系中椭圆长轴方向与x轴夹角正切值为\\
\quad\\
\tan\alpha=\frac{\lambda_负-\frac{1}{E_x^2}}{-\frac{\cos\varepsilon}{E_xE_y}}=\frac{\frac{\cos\varepsilon}{E_xE_y}}{\lambda_正-\frac{1}{E_x^2}}=\sqrt{-\frac{\lambda_负-\frac{1}{E_x^2}}{\lambda_正-\frac{1}{E_x^2}}}\\
\quad\\
\begin{aligned}\tan2\alpha&=\frac{2\sqrt{-(\lambda_负-\frac{1}{E_x^2})(\lambda_正-\frac{1}{E_x^2})}}{\lambda_负+\lambda_正-\frac{2}{E_x^2}}\\
\quad\\
&=\frac{2E_xE_y\cos\varepsilon}{E_x^2-E_y^2}\\
\quad\\
\end{aligned}
\quad\\
\small椭圆长短轴之比为\\
\quad\\
\sqrt{\frac{\lambda_正}{\lambda_负}}=\frac{\frac{E_x}{E_y}+\frac{E_y}{E_x}+\sqrt{\frac{E_x^2}{E_y^2}+
2\cos2\varepsilon+\frac{E_y^2}{E_x^2}}}{2|\sin\varepsilon|}
$$

从$\varphi$的表达式可以看出,若$\pi>\varepsilon>0$,即$\varphi_y$落后于$\varphi_x$,迎着波动传播的方向看去,振动方向随着时间增大逆时针旋转,若$-\pi<\varepsilon<0$,即$\varphi_y$超前于$\varphi_x$,振动方向随着时间增大顺时针旋转,$\varepsilon=0$或$\pi$时,振动方向不随时间而改变。

$\quad\\$

偏振态

$\quad\\$

对于满足特殊条件的椭圆偏振光[$\mathscr{E}$态],可将其分为左旋圆偏振光[$\mathscr{L}$态],右旋圆偏振光[$\mathscr{R}$态]和线偏振光[$\mathscr{P}$态]

$$\pi>\varepsilon>0,E_x=E_y\qquad\mathscr{L}\\
\quad\\
-\pi<\varepsilon<0,E_x=E_y\qquad\mathscr{R}\\
\quad\\
\varepsilon=0或\pi\qquad\mathscr{P}$$

$\quad\\$

旋转偏振光的角动量

$\quad\\$

由于光子的角动量永远为$\hbar$或$-\hbar$,故

$\quad\\$

偏振器

$\quad\\$

对于平行于透振方向透射率为$T_0$,垂直于透振方向透射率为$T_{90}$的线偏振片,振动方向与偏振片透振方向成$\theta$角的线偏振光垂直入射的透射率为

$$T=T_0\cos^2\theta+T_{90}\sin^2\theta$$

两个平行的透振方向成$\theta$角的线偏振片对垂直入射的自然光的透射率为

$$T=\frac{1}{2}(T_0T_0+T_{90}T_{90})\cos^2\theta+T_0T_{90}\sin^2\theta$$

当前网速较慢或者你使用的浏览器不支持博客特定功能,请尝试刷新或换用Chrome、Firefox等现代浏览器