Cauchy定理与Cauchy公式

$\quad\\$

函数沿曲线的积分

$\quad\\$

定义1$\quad$ 设$\gamma:[\alpha,\beta]\to\mathbb{C}$为一条可求长曲线,其定向规定为参数增加的方向.再设函数$f(z)=u(x,y)+iv(x,y)$定义在$\gamma$上.沿$\gamma$的正向取分点
$a=z_0,z_1,\cdots,z_n=b$,这些分点把$\gamma$分成$n$个小段,第$k$段记作
$\gamma_k(k=1,2,\cdots,n)$.在$\gamma+k$上任取一点$\zeta_k=\xi_k+i\eta_k$,取和

$$S=\sum\limits_{k=1}^{n}f(\zeta_k)(z_k-z_{k-1})$$

如果当$\lambda=\max\limits_{1\le k\le n}s_k$($s_k$为$\gamma_k$弧长)趋于零时,不管分点$z_k$和$\zeta_k$如何选取,和数$S$都趋于同一极限值,则称此极限为$f(z)$沿定向曲线$\gamma$的积分,记作

$$\int_{\gamma}f(z)\text{d}z=\lim\limits_{\lambda\to 0}\sum\limits_{k=1}^{n}f(\zeta_k)(z_k-z_{k-1})$$

$\quad\\$

Cauchy-Goursat定理

$\quad\\$

引理1$\quad$设$f(z)$是区域$D$内的连续函数,$\gamma(t)(\alpha\le t\le \beta)$是$D$内的可求长曲线.则$\forall \varepsilon>0$,存在内接于$\gamma$且完全位于$D$内部的折线$P$使得

$$\left|\int_{\gamma}f(z)\text{d}z-\int_{P}f(z)\text{d}z\right|<\varepsilon$$

$\nabla$证

$$
不妨设D为有界域(否则设\gamma包含在圆|z|<M内,取D与此圆的交集即可)\\
\quad\\
因\gamma为一紧集,边界\partial D为一闭集,故距离d(\gamma,\partial D)=2\rho>0\\
\quad\\
令D_1=\{z\in D|d(z,\gamma)<\rho\},则D_1为区域且\gamma\subset D_1\subset \overline{D_1}\subset D\\
\quad\\
设\gamma长度为L,由于f(z)在紧集\overline{D_1}上一致连续,故\\
\quad\\
\forall \varepsilon>0,\exists \delta>0,当z,z’\in \overline{D_1},且|z-z’|<\delta 时有\\
\quad\\
|f(z)-f(z’)|<\displaystyle\frac{\varepsilon}{2L}\\
\quad\\
在\gamma上依次取分点a=z_0,z_1,\cdots,z_n=b(a,b为\gamma 的起点与终点)\\
\quad\\
这些分点将\gamma分成n段,第k段记作\gamma_k,其弧长记作s_k\\
\quad\\
令s_k<\min(\rho,\delta)\quad(k=1,2,\cdots,n)\\
\quad\\
则以z_0,z_1,\cdots,z_n为顶点的折线P属于\overline{D_1}\\
\quad\\
以[z_{k-1},z_k]表示连接z_{k-1}与z_k的线段,则有\\
\quad\\
\begin{aligned}
&\;\quad\left|\int_{\gamma}f(z)\text{d}z-\int_{P}f(z)\text{d}z\right|\\
\quad\\
&=\left|\sum_{k=1}^{k=n}[\int_{\displaystyle\gamma_k}f(z)\text{d}z-\int_{\displaystyle[ z_{k-1},z_k]}f(z)\text{d}z]\right|\\
\quad\\
&=\left|\sum_{k=1}^{k=n}\int_{\displaystyle\gamma_k}[f(z)-f(z_{k-1})]\text{d}z-\sum_{k=1}^{k=n}[\int_{\displaystyle[ z_{k-1},z_k]}f(z)-\int_{\displaystyle\gamma_k}f(z_{k-1})]\text{d}z\right|\\
\quad\\
&=\left|\sum_{k=1}^{k=n}\int_{\displaystyle\gamma_k}[f(z)-f(z_{k-1})]\text{d}z-\sum_{k=1}^{k=n}\int_{\displaystyle[ z_{k-1},z_k]}[f(z)-f(z_{k-1})]\text{d}z\right|\\
\quad\\
&\le \sum_{k=1}^{k=n}\int_{\displaystyle\gamma_k}|f(z)-f(z_{k-1})||\text{d}z|+\sum_{k=1}^{k=n}\int_{\displaystyle[ z_{k-1},z_k]}|f(z)-f(z_{k-1})||\text{d}z|\\
\quad\\
&<\sum_{k=1}^{k=n}\frac{\varepsilon}{2L}\cdot s_k+\sum_{k=1}^{k=n}\frac{\varepsilon}{2L}\cdot s_k\\
\quad\\
&=\varepsilon
\end{aligned}\\
$$

$$\quad\\$$

Cauchy-Goursat定理(弱形式)$\quad$设$D\subset \mathbb{C}$为单连通区域,函数$f(z)$在$D$内解析,$\gamma$是$D$内任意一条可求长Jordan曲线,则有

$$\int_{\gamma}f(z)\text{d}z=0$$

$\nabla$证

$$
由引理1,我们只需证对于区域D内任意闭折线P都有\\
\quad\\
\int_{P}f(z)\text{d}z=0\\
\quad\\
而沿任意闭折线的积分均可拆解为沿若干个三角形的环路积分之和\\
\quad\\
故只需证明对于任意三角形T都有\\
\quad\\
\int_{T}f(z)\text{d}z=0\\
\quad\\
设\left|\int_{T}f(z)\text{d}z\right|=M\\
\quad\\
取三角形T各边中点连线将其等分为四个小三角形T_1,T_2,T_3,T_4\\
\quad\\
\int_{T}f(z)\text{d}z=\sum_{k=1}^{4}\int_{\displaystyle T_k}f(z)\text{d}z\\
\quad\\
上式右端四个积分中必有一个模不小于\frac{M}{4},设此积分对应的三角形为T^1\\
\quad\\
对T^1继续进行此四等分操作,第n次时可得\\
\quad\\
\left|\int_{\displaystyle T^n}f(z)\text{d}z\right|\ge\frac{M}{4^n}\\
\quad\\
设初始三角形T周长为L,则T^n周长为\frac{L}{2^n}\\
\quad\\
记T^n围成的闭区域为\triangle_n,则\triangle_{n+1}\subset\triangle_{n}(n=0,1,2,\cdots)\\
\quad\\
又记d=\text{diam}\triangle_0,则\text{diam}\triangle_n=\frac{d}{2^n}\to 0(n\to \infty)\\
\quad\\
由\text{Cantor}定理知存在唯一的一点z_0\in \bigcap_{n=0}^{\infty}\triangle_n\\
\quad\\
因为z_0\in D,f(z)在z_0可导,故在z_0邻域V(z_0;\delta)\subset D内有\\
\quad\\
\Delta f=f’(z_0)\Delta z+\rho(\Delta z)\\
\quad\\
当n充分大时,T^n落在此邻域内\\
\quad\\
\begin{aligned}此时\int_{\displaystyle T^n}f(z)\text{d}z&=\int_{\displaystyle T^n}f(z_0)\text{d}z+f’(z_0)\int_{\displaystyle T^n}(z-z_0)\text{d}z+\int_{\displaystyle T^n}\rho(\Delta z)\text{d}z\\
\quad\\
&=\int_{\displaystyle T^n}\rho(\Delta z)\text{d}z\\
\quad\\
&\le \frac{d}{2^n}\cdot\frac{L}{2^n}\max\limits_{\displaystyle z\in T^n}\left|{\frac{\rho(\Delta z)}{\Delta z}}\right|\\
\end{aligned}\\
\quad\\
故0\le M\le dL\max\limits_{\displaystyle z\in T^n}\left|{\frac{\rho(\Delta z)}{\Delta z}}\right|\\
\quad\\
又\lim\limits_{n\to\infty}\max\limits_{\displaystyle z\in T^n}\left|{\frac{\rho(\Delta z)}{\Delta z}}\right|=0,故M=0
$$

$$\quad\\$$

引理2(Bieberbach-Csillag定理)$\quad$若函数$z=g(w)$在$|w|<1$上解析,在
$|w|\le 1$上连续,记$l(r)$为圆周$|w|=r\le 1$在$z$平面的像曲线的长度,则$l(r)$是$r\in[0,1]$的单调不减函数

$\nabla$证

$$
固定r<1,令r<R\le 1\\
\quad\\
由于封闭曲线的长度为内接于其本身的多边形周长的极限\\
\quad\\
故\forall \varepsilon>0,\exists \theta_{n+1}=\theta_1<\theta_2<\cdots<\theta_n<\theta_1+2\pi使\\
\quad\\
p(r)\equiv \sum_{k=1}^{n}|g(re^{i\theta_{k+1}})-g(re^{i\theta_{k}})|>l(r)-\varepsilon\\
\quad\\
考虑函数p(w)\equiv \sum_{k=1}^{n}|g(we^{i\theta_{k+1}})-g(we^{i\theta_{k}})|\\
\quad\\
由于g为单位圆内解析函数,故p(w)为单位圆内次调和函数[之后的内容]\\
\quad\\
因此|p(w)|=p(w)在|w|\le R内的最大值在某点w_m=Re^{i\theta_m}取到\\
\quad\\
又p(Re^{i\theta_m})为内接于圆周|w|=R的像曲线之内的多边形周长,故p(w_m)\le l(R)\\
\quad\\
因此l(R)> l(r)-\varepsilon,由\varepsilon任意性知l(R)\ge l(r)
$$

$$\quad\\$$

引理3(Helly-Bray定理)$\quad$设$g(re^{i\theta})$和$h(re^{i\theta})$是闭区域$|r|\le 1$内的连续函数,且设$g(re^{i\theta})$作为$\theta\in[0,2\pi]$的函数,其将圆周$|z|=r$映成的像曲线长度对$r$一致有界,则有

$$\int_{0}^{2\pi}h(e^{i\theta})\text{d}g(e^{i\theta})=\lim\limits_{r\to 1}\int_{0}^{2\pi}h(re^{i\theta})\text{d}g(re^{i\theta})$$

$\nabla$证

$$
令L为g(re^{i\theta})将圆周|z|=r映成的像曲线的长度的上确界\\
\quad\\
易知h(re^{i\theta})在|r|\le 1上一致连续,故\\
\quad\\
\forall \varepsilon>0,\exists n\in \mathbb{N_+},\forall r\le 1,当|\theta-\theta’|\le\frac{2\pi}{n}时有\\
\quad\\
|h(re^{i\theta})-h(re^{i\theta’})|\le\frac{\varepsilon}{3L}\\
\quad\\
\left|\int_{\frac{2k\pi}{n}}^{\frac{2(k+1)\pi}{n}}[h(re^{i\theta})-h(re^{i\frac{2k\pi}{n}})]\text{d}g(re^{i\theta})\right|\le\int_{\frac{2k\pi}{n}}^{\frac{2(k+1)\pi}{n}}\frac{\varepsilon}{3T}|\text{d}g(re^{i\theta})|\\
\quad\\
累和有\left|\sum_{k=0}^{n-1}\int_{\frac{2k\pi}{n}}^{\frac{2(k+1)\pi}{n}}[h(re^{i\theta})-h(re^{i\frac{2k\pi}{n}})]\text{d}g(re^{i\theta})\right|\le\frac{\varepsilon}{3}\\
\quad\\
即\left|\int_{0}^{2\pi}h(re^{i\theta})\text{d}g(re^{i\theta})-\sum_{k=0}^{n-1}h(re^{i\frac{2k\pi}{n}})[g(re^{i\frac{2(k+1)\pi}{n}})-g(re^{i\frac{2k\pi}{n}})]\right|\le\frac{\varepsilon}{3}\qquad(1)\\
\quad\\
令r=1有\left|\int_{0}^{2\pi}h(e^{i\theta})\text{d}g(e^{i\theta})-\sum_{k=0}^{n-1}h(e^{i\frac{2k\pi}{n}})[g(e^{i\frac{2(k+1)\pi}{n}})-g(e^{i\frac{2k\pi}{n}})]\right|\le\frac{\varepsilon}{3}\qquad(2)\\
\quad\\
又由g(re^{i\theta})和h(re^{i\theta})的连续性,存在r_0<1,当r_0<r<1时有\\
\quad\\
\left|\sum_{k=0}^{n-1}h(re^{i\frac{2k\pi}{n}})[g(re^{i\frac{2(k+1)\pi}{n}})-g(re^{i\frac{2k\pi}{n}})]-\sum_{k=0}^{n-1}h(e^{i\frac{2k\pi}{n}})[g(e^{i\frac{2(k+1)\pi}{n}})-g(e^{i\frac{2k\pi}{n}})]\right|<\frac{\varepsilon}{3}\qquad(3)\\
\quad\\
由(1)(2)(3)式,可得\\
\quad\\
\left|\int_{0}^{2\pi}h(e^{i\theta})\text{d}g(e^{i\theta})-\int_{0}^{2\pi}h(re^{i\theta})\text{d}g(re^{i\theta})\right|<\varepsilon\qquad\square
$$

$$\quad\\$$

Cauchy-Goursat定理(强形式)$\quad$设$D$为可求长Jordan曲线$\gamma$的内部,函数$f(z)$在$D$内解析,在$\overline{D}$上连续,则有

$$\int_{\gamma}f(z)\text{d}z=0$$

$\nabla$证

$$
由黎曼映射定理[之后的内容],存在解析函数z=g(w)将区域|w|<1映为区域D\\
\quad\\
且由\text{Osgood-Carathéodory}定理[之后的内容],g(w)在|w|\le1上连续\\
\quad\\
且将闭区域|w|\le1同胚映射为\overline{D}\\
\quad\\
令f(z)=f[g(w)]=h(w),则g(w)与h(w)在|w|\le 1上连续\\
\quad\\
由引理1,g(re^{i\theta})将|w|=r映成的像曲线长度不超过\gamma的长度,因此对r为一致有界\\
\quad\\
\begin{aligned}由引理2,\int_{\gamma}f(z)\text{d}z&=\int_{0}^{2\pi}h(e^{i\theta})\text{d}g(e^{i\theta})\\
\quad\\
&=\lim\limits_{r\to 1}\int_{0}^{2\pi}h(re^{i\theta})\text{d}g(re^{i\theta})\\
\quad\\
&=\lim\limits_{r\to 1}\int_{\displaystyle\gamma_r}f(z)\text{d}z\end{aligned}\\
\quad\\
因为|w|=r在|w|=1之内,同胚映射保持区域的拓扑性质不变,故\gamma_r在\gamma之内\\
\quad\\
由\text{柯西-古尔萨}定理的弱形式,\int_{\displaystyle\gamma_r}f(z)\text{d}z=0\\
\quad\\
故\int_{\gamma}f(z)\text{d}z=0\qquad \square
$$

$$\quad\\$$

约定如下记号,所谓Jordan曲线族$\gamma=\gamma_0+\gamma_1^{-}+\cdots+\gamma_n^{-}$,指该曲线族由$n+1$条Jordan曲线组成,$\gamma_0$取正定向,$\gamma_1,\cdots,\gamma_n$取负定向;$\gamma_1,\cdots,\gamma_n$都在$\gamma_0$内部,且其中任意一条均在其他各条的外部。所谓Jordan曲线族$\gamma=\gamma_0+\gamma_1^{-}+\cdots+\gamma_n^{-}$围成区域$D$,指由$\gamma_0,\gamma_1,\cdots,\gamma_n$围成的$n+1$连通区域$D$。称Jordan曲线族可求长,指组成$\gamma$的每一条曲线可求长。

由于任意$n+1$连通区域均可用可求长辅助曲线将其划分为$n+1$个简单可求长闭曲线围成的区域,故有

定理3$\quad$设可求长Jordan曲线族$\gamma=\gamma_0+\gamma_1^{-}+\cdots+\gamma_n^{-}$围成区域$D$,函数$f(z)$在$D$内解析,在$\overline{D}$上连续,则有

$$\int_{\gamma}f(z)\text{d}z=0$$

$$\quad\\$$

推论1$\quad$设可求长Jordan曲线族$\gamma=\gamma_1^{-}+\cdots+\gamma_n^{-}$围成无界区域$D$,函数在$D\backslash\{\infty\}$解析,且满足

$$\lim\limits_{z\to \infty}z^2f(z)=a$$

其中$a$为常数(此时称$f(z)$在$\infty$至少有二阶零点),又$f(z)$在$\overline{D}$上连续,则

$$\int_{\gamma}f(z)\text{d}z=0$$

$\nabla$证

$$
作充分大圆周\gamma_0:|z|=R,使之包含\gamma_1,\cdots,\gamma_n\\
\quad\\
则有\int_{\displaystyle\gamma}f(z)\text{d}z=-\int_{\displaystyle\gamma_0}f(z)\text{d}z\\
\quad\\
\begin{aligned}又\left|\int_{\displaystyle\gamma_0}f(z)\text{d}z\right|&=\left|\int_{\displaystyle\gamma_0}f(z)\text{d}z\right|\\
\quad\\
&=\left|\int_{\displaystyle\gamma_0}z^2f(z)\frac{\text{d}z}{z^2}\right|\\
\quad\\
&\le\max\limits_{|z|=R}|z^2f(z)|\frac{2\pi}{R}\\
\quad\\
&\to 0 \quad R\to \infty\end{aligned}\\
\quad\\
故\int_{\displaystyle\gamma}f(z)\text{d}z=-\lim\limits_{R\to \infty}\int_{|z|=R}f(z)\text{d}z=0\qquad\square
$$

$$\quad\\$$

定义2$\quad$设$f(z)$在空心邻域$V^{*}(\infty;R)$内解析
$(1)$若$f(\displaystyle\frac{1}{\zeta})$可开拓成邻域$V(0;\displaystyle\frac{1}{R})$内解析函数,则称$f(z)$在$\infty$点解析
$(2)$若$f(\displaystyle\frac{1}{\zeta})(-\displaystyle\frac{1}{\zeta^2})\text{d}\zeta$可开拓成邻域$V(0;\displaystyle\frac{1}{R})$内全纯微分,(即$-\displaystyle\frac{1}{\zeta^2}f(\displaystyle\frac{1}{\zeta})$在$V(0;\displaystyle\frac{1}{R})$内解析),则称$f(z)\text{d}z$在$\infty$点全纯

下一章将证明,若$f(z)$在$V^{*}(\infty;R)$内解析,则$f(z)$在$\infty$解析的充要条件为$\lim\limits_{z\to\infty}f(z)=a$存在;$f(z)\text{d}z$在$\infty$全纯的充要条件为$f(z)$在$\infty$至少有二阶零点

$$\quad\\$$

由以上内容,这节的定理与推论可表述成以下统一的形式

归纳$\quad$设可求长Jordan曲线或可求长Jordan曲线族$\gamma$围成区域$D$,微分$f(z)\text{d}z$在$D$内全纯,函数$f(z)$在$\overline{D}$上连续,则

$$\int_{\gamma}f(z)\text{d}z=0$$

$\quad\\$

Cauchy公式

$\quad\\$

引理4$\quad$设$\gamma$为可求长Jordan弧或Jordan曲线,$\varphi(\zeta)$在$\gamma$上连续,则函数(称为Cauchy型积分)

$$F(z)=\frac{1}{2\pi i}\int_{\gamma}\frac{\varphi(\zeta)}{\zeta-z}\text{d}\zeta$$

在$\overline{\mathbb{C}}\backslash\gamma$的每一个区域$D$内解析,且对有限点$z$有

$$F^{(n)}(z)=\frac{n!}{2\pi i}\int_{\gamma}\frac{\varphi(\zeta)}{(\zeta-z)^{n+1}}\text{d}\zeta$$

$\nabla$证

$$
若\gamma为\text{Jordan}弧,则\overline{\mathbb{C}}\backslash\gamma为单连通区域\\
\quad\\
若\gamma为\text{Jordan}曲线,则\overline{\mathbb{C}}\backslash\gamma由两个单连通区域组成\\
\quad\\
又\lim\limits_{z\to\infty}F(z)=0\\
\quad\\
故只需证F(z)在有限点解析,则其在\infty点也解析\\
\quad\\
(1)首先证F(z)在D内连续\\
\quad\\
\forall z_0\in D,取邻域V(z_0;\delta)\subset D\\
\quad\\
令z\in V(z_0,\delta/2),则当\zeta\in \gamma时有|\zeta-z|\ge\delta/2,此时有\\
\quad\\
|F(z)-F(z_0)|=\left|\frac{1}{2\pi i}\int_{\gamma}\frac{(z-z_0)\varphi(\zeta)}{(\zeta-z)(\zeta-z_0)}\text{d}\zeta\right|\le\frac{|z-z_0|}{\pi\delta^2}\int_{\gamma}|\varphi(\zeta)||\text{d}\zeta|\\
\quad\\
故F(z)在z_0点连续,又由z_0的任意性知F(z)在D内连续\\
\quad\\
(2)其次证F’(z)=\frac{1}{2\pi i}\int_{\gamma}\frac{\varphi(\zeta)}{(\zeta-z)^2}\text{d}\zeta\\
\quad\\
\forall z_0\in D,可得\frac{F(z)-F(z_0)}{z-z_0}=\frac{1}{2\pi i}\int_{\gamma}\frac{\varphi(\zeta)}{(\zeta-z)(\zeta-z_0)}\text{d}\zeta\\
\quad\\
取\frac{\varphi(\zeta)}{\zeta-z_0}作为(1)中的\varphi(\zeta),则此积分为D内的连续函数\\
\quad\\
故F’(z_0)=\lim\limits_{z\to z_0}\frac{1}{2\pi i}\int_{\gamma}\frac{\varphi(\zeta)}{(\zeta-z)(\zeta-z_0)}\text{d}\zeta=\frac{1}{2\pi i}\int_{\gamma}\frac{\varphi(\zeta)}{(\zeta-z)^2}\text{d}\zeta\\
\quad\\
因此F(z)在D内解析\\
\quad\\
(3)用数学归纳法证高阶导数公式,设1\le k\le n-1时,有\\
\quad\\
F^{(k)}(z)=\frac{k!}{2\pi i}\int_{\gamma}\frac{\varphi(\zeta)}{(\zeta-z)^{k+1}}\text{d}\zeta\\
\quad\\
\forall z_0\in D\\
\quad\\
\begin{aligned}F^{(n-1)}(z)-F^{(n-1)}(z_0)&=\frac{(n-1)!}{2\pi i}\left[\int_{\gamma}\frac{\varphi(\zeta)}{(\zeta-z)^{n}}\text{d}\zeta-\int_{\gamma}\frac{\varphi(\zeta)}{(\zeta-z_0)^{n}}\text{d}\zeta\right]\\
\quad\\
&=\frac{(n-1)!}{2\pi i}\left[\int_{\gamma}\right.\frac{\varphi(\zeta)}{(\zeta-z)^{n-1}(\zeta-z_0)}\text{d}\zeta\\
\quad\\
&\quad+(z-z_0)\left.\int_{\gamma}\frac{\varphi(\zeta)}{(\zeta-z)^{n}(\zeta-z_0)}\text{d}\zeta-\int_{\gamma}\frac{\varphi(\zeta)}{(\zeta-z_0)^{n}}\text{d}\zeta\right]\end{aligned}\\
\quad\\
除以z-z_0得\\
\quad\\
\begin{aligned}\frac{F^{(n-1)}(z)-F^{(n-1)}(z_0)}{z-z_0}
&=\frac{n-1}{z-z_0}\left[\frac{(n-2)!}{2\pi i}\int_{\gamma}\right.\frac{\varphi(\zeta)}{(\zeta-z)^{n-1}(\zeta-z_0)}\text{d}\zeta\\
\quad\\
&\quad-\frac{(n-2)!}{2\pi i}\left.\int_{\gamma}\frac{\varphi(\zeta)}{(\zeta-z_0)^{n-1}(\zeta-z_0)}\text{d}\zeta\right]\\
\quad\\
&\quad+\frac{(n-1)!}{2\pi i}\int_{\gamma}\frac{\varphi(\zeta)}{(\zeta-z)^{n}(\zeta-z_0)}\text{d}\zeta\qquad\star\end{aligned}\\
\quad\\
令\varphi_1(\zeta)=\frac{\varphi(\zeta)}{\zeta-z_0},由归纳假设有,当z\to z_0时,前两项积分\\
\quad\\
\frac{n-1}{z-z_0}\left[\frac{(n-2)!}{2\pi i}\int_{\gamma}\frac{\varphi(\zeta)}{(\zeta-z)^{n-1}(\zeta-z_0)}\text{d}\zeta
-\frac{(n-2)!}{2\pi i}\int_{\gamma}\frac{\varphi(\zeta)}{(\zeta-z_0)^{n-1}(\zeta-z_0)}\text{d}\zeta\right]\\
\quad\\\to (n-1)\frac{(n-1)!}{2\pi i}\int_{\gamma}\frac{\varphi(\zeta)}{(\zeta-z_0)^{n+1}}\text{d}\zeta\\
\quad\\
至于第三个积分,令\varphi_2(\zeta)=\frac{\varphi_1(\zeta)}{\zeta-z_0}有\\
\quad\\
\frac{(n-2)!}{2\pi i}\left[\int_{\gamma}\frac{\varphi_1(\zeta)}{(\zeta-z)^{n}}\text{d}\zeta-\int_{\gamma}\frac{\varphi_1(\zeta)}{(\zeta-z_0)^{n}}\text{d}\zeta\right]\\
\quad\\
=\left[\frac{(n-2)!}{2\pi i}\int_{\gamma}\frac{\varphi_2(\zeta)}{(\zeta-z)^{n-1}}\text{d}\zeta-\frac{(n-2)!}{2\pi i}\int_{\gamma}\frac{\varphi_2(\zeta)}{(\zeta-z_0)^{n-1}}\text{d}\zeta\right]\\
\quad\\+(z-z_0)\frac{(n-2)!}{2\pi i}\int_{\gamma}\frac{\varphi_2(\zeta)}{(\zeta-z)^{n}}\text{d}\zeta\\
\quad\\
由归纳假设,中括号里的积分可导,因此连续,故z\to z_0时该式之值趋于零\\
\quad\\
即\frac{(n-1)!}{2\pi i}\int_{\gamma}\frac{\varphi(\zeta)}{(\zeta-z)^{n}(\zeta-z_0)}\text{d}\zeta\to\frac{(n-1)!}{2\pi i}\int_{\gamma}\frac{\varphi(\zeta)}{(\zeta-z_0)^{n+1}}\text{d}\zeta\\
\quad\\
代回\star式,可得F^{(n)}(z_0)=\lim\limits_{z\to z_0}\frac{F^{(n-1)}(z)-F^{(n-1)}(z_0)}{z-z_0}=\frac{n!}{2\pi i}\int_{\gamma}\frac{\varphi(\zeta)}{(\zeta-z)^{n+1}}\text{d}\zeta\\
\quad\\
由z_0的任意性可知高阶导数公式成立\qquad\square
$$

$$\quad\\$$

Cauchy公式$\quad$设区域$D$是可求长Jordan曲线$\gamma$的内部,函数$f(z)$在$D$内解析,在$\overline{D}$上连续,则

$(1)$在$D$内

$$f(z)=\frac{1}{2\pi i}\int_{\gamma}\frac{f(\zeta)}{\zeta-z}\text{d}\zeta$$

$(2)f(z)$在$D$内有各阶导数,且在$D$内

$$f^{(n)}(z)=\frac{n!}{2\pi i}\int_{\gamma}\frac{f(\zeta)}{(\zeta-z)^{n+1}}\text{d}\zeta$$

$\nabla$证

$$
\forall z_0\in D,作充分小圆周C_r:|z-z_0|=r\\
\quad\\
设D_1为\gamma和C_r围成的二连通区域,则函数\frac{f(z)}{z-z_0}在D_1内解析\\
\quad\\
由柯西\text{-}古尔萨定理有\int_{\gamma}\frac{f(z)}{z-z_0}\text{d}z=\int_{C_r}\frac{f(z)}{z-z_0}\text{d}z\\
\quad\\
又f(z)在z_0点可导,\Delta f=f’(z_0)\Delta z+\rho(\Delta z)\\
\quad\\
\int_{\gamma}\frac{f(z)}{z-z_0}\text{d}z=\int_{C_r}\frac{f(z_0)}{z-z_0}\text{d}z+\int_{C_r}f’(z_0)\text{d}z+\int_{C_r}\frac{\rho(z-z_0)}{z-z_0}\text{d}z\\
\quad\\
\to f(z_0)\cdot 2\pi i \quad r\to 0\\
\quad\\
故f(z_0)=\frac{1}{2\pi i}\int_{\gamma}\frac{f(z)}{z-z_0}\text{d}z\\
\quad\\
由z_0任意性知f(z)=\frac{1}{2\pi i}\int_{\gamma}\frac{f(\zeta)}{\zeta-z}\text{d}\zeta\\
\quad\\
再由引理4知高阶导数公式成立\qquad\square
$$

$$\quad\\$$

对于$n+1$连通区域,固定$z_0\in D$,做辅助线将$D$划分为$n+1$个单连通区域,使$z_0$属于某一单连通区域,对包含$z_0$的单连通区域应用柯西积分公式,其他单连通区域应用柯西-古尔萨定理,相加可得

定理5$\quad$设区域$D$是可求长Jordan曲线族$\gamma=\gamma_0+\gamma_1^{-}+\cdots+\gamma_n^{-}$的内部,函数$f(z)$在$D$内解析,在$\overline{D}$上连续,则

$(1)$在$D$内

$$f(z)=\frac{1}{2\pi i}\int_{\gamma}\frac{f(\zeta)}{\zeta-z}\text{d}\zeta$$

$(2)f(z)$在$D$内有各阶导数,且在$D$内

$$f^{(n)}(z)=\frac{n!}{2\pi i}\int_{\gamma}\frac{f(\zeta)}{(\zeta-z)^{n+1}}\text{d}\zeta$$

$$\quad\\$$

定理6$\quad$若函数$f(z)$在区域$D$内解析,则$f(z)$在$D$内有各阶导数

$\nabla$证

$$
\forall z_0\in D,以z_0为心作一充分小圆周C_r,使C_r及其内部属于D\\
\quad\\
由柯西积分公式知f(z)在C_r内部有各阶导数\\
\quad\\
又由z_0的任意性,故f(z)在D内有各阶导数\qquad\square
$$

$$\quad\\$$

Cauchy不等式$\quad$若函数$f(z)$在$|z-a|<R$内解析,且$f(z)\le M$,则有

$$|f^{(n)}(a)|\le\frac{n!M}{R^n}$$

$\nabla$证

$$
作圆周C_r:|z-a|=r,0<r<R,则在圆周内有\\
\quad\\
|f^{(n)}(a)|=\left|\frac{n!}{2\pi i}\int_{C_r}\frac{f(\zeta)}{(\zeta-a)^{n+1}}\text{d}\zeta\right|\le\frac{n!M}{r^n}\\
\quad\\
令r\to R,易知不等式在圆周|z-a|=R内成立\qquad\square
$$

$$\quad\\$$

称在$\mathbb{C}$上解析的函数为整函数,设$f(z)$为一整函数,$\forall z_0\in \mathbb{C}$,在$|z-z_0|<R$内对其应用柯西不等式有$f’(z_0)\le\displaystyle\frac{M}{R}$,令$R\to \infty$,则有$f’(z_0)=0$,由$z_0$的任意性,易知如下定理成立

Liouville定理$\quad$有界整函数必为常数

$\quad$

$\quad$

$(1)\quad$若整函数$f(z)$满足$\displaystyle\lim_{z\to \infty}\left|\frac{f(z)}{z}\right|=0$,由证明过程知$f(z)$也为常数

$(2)\quad$若整函数$f(z)$满足$\displaystyle\lim_{z\to \infty}\left|\frac{f(z)}{z^k}\right|=\infty,\displaystyle\lim_{z\to \infty}\left|\frac{f(z)}{z^{k+1}}\right|=0$,其中$k$为整数,由之后的泰勒展开形式知$f(z)$也为常数

$$\quad\\$$

设$P(z)$为一多项式,若其在$\mathbb{C}$上无零点,则$1/P(z)$为有界整函数,由刘维尔定理,其为常数,故有

代数基本定理$\quad$次数大于等于$1$的多项式在$\mathbb{C}$上必有零点

$$\quad\\$$

如下的定理揭示了比刘维尔定理更为深刻的整函数性质,其证明将在之后微分几何与椭圆模函数的内容里分别给出

Picard小定理$\quad$若整函数取不到两个互异复值,则其必为常数

$$\quad\\$$

推论2$\quad$设可求长曲线族$\gamma=\gamma_1^{-}+\cdots+\gamma_{n}^{-}$围成无界区域$D$,函数$f(z)$在$D$内解析,在$\overline{D}$上连续,则$\forall z\in D\backslash\{\infty\}$有

$$f(z)=f(\infty)+\frac{1}{2\pi i}\int_{\gamma}\frac{f(\zeta)}{\zeta-z}\text{d}\zeta\\
\quad\\
f^{(n)}(z)=\frac{n!}{2\pi i}\int_{\gamma}\frac{f(\zeta)}{(\zeta-z)^{n+1}}\text{d}\zeta\qquad n\in\mathbb{N_+}$$

$\nabla$证

$$
\forall z_0\in D\backslash\{\infty\},作充分大圆周C_R:|z|=R使其包含z_0与\gamma\\
\quad\\
由柯西公式有f(z_0)=\frac{1}{2\pi i}\int_{\displaystyle C_R}\frac{f(\zeta)}{\zeta-z_0}\text{d}\zeta+\frac{1}{2\pi i}\int_{\gamma}\frac{f(\zeta)}{\zeta-z_0}\text{d}\zeta\quad(1)\\
\quad\\
f^{(n)}(z_0)=\frac{n!}{2\pi i}\int_{\displaystyle C_R}\frac{f(\zeta)}{(\zeta-z_0)^{n+1}}\text{d}\zeta+\frac{n!}{2\pi i}\int_{\gamma}\frac{f(\zeta)}{(\zeta-z_0)^{n+1}}\text{d}\zeta\quad(2)\\
\quad\\
(1)式右边第一个积分可改写为\\
\quad\\
\begin{aligned}\frac{1}{2\pi i}\int_{\displaystyle C_R}\frac{f(\zeta)}{\zeta-z_0}\text{d}\zeta&=
\frac{1}{2\pi i}\int_{\displaystyle C_R}\frac{f(\zeta)-f(\infty)}{\zeta-z_0}\text{d}\zeta+\frac{1}{2\pi i}\int_{\displaystyle C_R}\frac{f(\infty)}{\zeta-z_0}\text{d}\zeta\\
\quad\\
&=f(\infty)+\frac{1}{2\pi i}\int_{\displaystyle C_R}\frac{f(\zeta)-f(\infty)}{\zeta-z_0}\text{d}\zeta\\
\quad\\\end{aligned}\\
\quad\\
\left|\frac{1}{2\pi i}\int_{\displaystyle C_R}\frac{f(\zeta)-f(\infty)}{\zeta-z_0}\text{d}\zeta\right|\le\max\limits_{|\zeta|=R}|f(\zeta)-f(\infty)|\frac{R}{R-|z_0|}\to 0 \quad (R\to\infty)\\
\quad\\
故f(z_0)=\frac{1}{2\pi i}\int_{\gamma}\frac{f(\zeta)}{\zeta-z_0}\text{d}\zeta,由z_0任意性,第一式得证\\
\quad\\
而(2)右边第一个积分中被积函数在\infty至少具有二阶零点\\
\quad\\
由推论一,此积分为零\qquad\square
$$

$\quad\\$

Green公式与Pompeiu公式

$\quad\\$

以上对解析函数$f(z)$的闭路积分作了讨论,现在来分析一般函数$f(z,\overline{z})$的闭路积分与其面积分的关系,记微分的外乘积为

$\text{d}z_1\wedge\text{d}z_2=(\text{d}x_1+i\text{d}y_1)\wedge(\text{d}x_2+i\text{d}y_2)=i(\text{d}x_1\wedge \text{d}y_2-\text{d}x_2\wedge \text{d}y_1)$

则有$\text{d}z\wedge\text{d}z=0,\text{d}\overline{z}\wedge\text{d}\overline{z}=0,\text{d}z\wedge\text{d}\overline{z}=-2i\text{d}x\wedge\text{d}y$

称$f(z,\overline{z})$为零次外微分形式,$\omega_1(z,\overline{z})\text{d}z+\omega_2(z,\overline{z})\text{d}\overline{z}$为一次外微分形式,$\omega(z,\overline{z})\text{d}z\wedge\text{d}\overline{z}$为二次外微分形式

引入记号$\displaystyle\partial=\frac{\partial}{\partial z}\text{d}z,\displaystyle\overline{\partial}=\frac{\partial}{\partial \overline{z}}\text{d}\overline{z}$,易知$\partial^2=0,\overline{\partial^2}=0,\partial\overline{\partial}=-\overline{\partial}\partial$,定义外微分算子$\text{d}=\partial+\overline{\partial}$,易知$\text{d}^2\omega=0$对任意次外微分形式$\omega$成立

由以上记号,可以叙述如下复形式的格林公式

$$\quad\\$$

Green公式$\quad$设$\partial D$为可求长Jordan曲线,$\omega_1(z,\overline{z}),\omega_2(z,\overline{z})$均在$D$上有一阶连续偏导,且在$\overline{D}$上连续,$\omega=\omega_1\text{d}z+\omega_2\text{d}\overline{z}$为$\overline{D}$上的一次外微分形式,则有

$$\int_{\partial D}\omega=\iint_{D}\text{d}\omega$$

$\nabla$证

$$
设\omega_1=\xi_1+i\eta_1\qquad\omega_2=\xi_2+i\eta_2\\
\quad\\
则\text{d}\omega=(\frac{\partial \omega_1}{\partial \overline{z}}-\frac{\partial \omega_2}{\partial z})\text{d}\overline{z}\wedge\text{d}z\\
\quad\\
=2i\text{d}x\wedge\text{d}y\left[\frac{1}{2}\left(\frac{\partial }{\partial x}+i\frac{\partial }{\partial y}\right)(\xi_1+i\eta_1)-\frac{1}{2}\left(\frac{\partial }{\partial x}-i\frac{\partial }{\partial y}\right)(\xi_2+i\eta_2)\right]\\
\quad\\
=[-\xi_{1y}-\eta_{1x}-\xi_{2y}+\eta_{2x}+i(\xi_{1x}-\eta_{1y}-\xi_{2x}-\eta_{2y})]\text{d}x\wedge\text{d}y\\
\quad\\
又\omega=(\xi_1\text{d}x-\eta_1\text{d}y)+(\xi_2\text{d}x+\eta_2\text{d}y)+i(\xi_1\text{d}y+\eta_1\text{d}x)+i(-\xi_2\text{d}y+\eta_2\text{d}x)\\
\quad\\
由实形式的格林公式知结论成立\qquad\square
$$

$\quad$
$\quad$此公式对高维复流形亦成立,称为Stokes公式

$$\quad\\$$

Pompeiu公式$\quad$设$\partial D$为可求长Jordan曲线,函数$f(z,\overline{z})$在$D$上有一阶连续偏导,在$\overline{D}$上连续,则对$\forall z\in D$有

$$f(z)=\frac{1}{2\pi i}\int_{\partial D}\frac{f(\zeta)}{\zeta-z}\text{d}\zeta+\frac{1}{2\pi i}\int_{D}\frac{\partial f(\zeta)}{\partial \overline{\zeta}}\cdot\frac{\text{d}\zeta\wedge\text{d}\overline{\zeta}}{\zeta-z}$$

$\nabla$证

$$
\forall z \in D,作其邻域V(z;\delta)\subset D\\
\quad\\
引入微分形式\frac{f(\zeta)\text{d}\zeta}{\zeta-z}\\
\quad\\
由复形式的格林公式有\int_{\partial D}\frac{f(\zeta)\text{d}\zeta}{\zeta-z}-\int_{\partial V}\frac{f(\zeta)\text{d}\zeta}{\zeta-z}=\int_{D\backslash V}d_{\zeta}\left(\frac{f(\zeta)\text{d}\zeta}{\zeta-z}\right)\\
\quad\\
直接计算得d_{\zeta}\left(\frac{f(\zeta)\text{d}\zeta}{\zeta-z}\right)=\frac{\partial f(\zeta)}{\partial \overline{\zeta}}\cdot\frac{\text{d}\overline{\zeta}\wedge\text{d}\zeta}{\zeta-z}\\
\quad\\
再对第二项进行估计\\
\quad\\
\int_{\partial V}\frac{f(\zeta)\text{d}\zeta}{\zeta-z}=\int_{\partial V}\frac{f(\zeta)-f(z)}{\zeta-z}\text{d}\zeta+\int_{\partial V}\frac{f(z)\text{d}\zeta}{\zeta-z}\\
\quad\\
=\int_{\partial V}\frac{f(\zeta)-f(z)}{\zeta-z}\text{d}\zeta+2\pi if(z)
\quad\\
由于f(\zeta)在\overline{D}上存在一阶连续偏导,故|f(\zeta)-f(z)|/|\zeta-z|\le M\\
\quad\\
\left|\int_{\partial V}\frac{f(\zeta)-f(z)}{\zeta-z}\text{d}\zeta\right|\le 2\pi \delta M\\
\quad\\
令\delta\to 0,即得f(z)=\frac{1}{2\pi i}\int_{\partial D}\frac{f(\zeta)}{\zeta-z}\text{d}\zeta+\frac{1}{2\pi i}\int_{D}\frac{\partial f(\zeta)}{\partial \overline{\zeta}}\cdot\frac{\text{d}\zeta\wedge\text{d}\overline{\zeta}}{\zeta-z}\qquad\square
$$

$$\quad\\$$

若$\psi(z)$为连续函数,则称使$\psi(z)\neq 0$的点集的闭包为$\psi(z)$的支集,记作$\text{supp}\psi$,对支集有如下定理

一维$\overline{\partial}$问题的解$\quad$若$\psi$在区域$D$上有一阶连续偏导,且其支集为紧集,令

$$u(z)=\frac{1}{2\pi i}\int_{D}\frac{\psi(z)}{\zeta-z}\text{d}\zeta\wedge\text{d}\overline{\zeta}$$

则$u(z)$在$D$上有一阶连续偏导,且对$\forall z\in D$有$\displaystyle\frac{\partial u(z)}{\partial \overline{z}}=\psi(z)$

$\quad\\$

变上限积分确定的函数

$\quad\\$

定义3$\quad$设$f(z)$在区域$D$内连续,若存在$D$内函数$F(z)$,使$F’(z)=f(z)$,则称$F(z)$是$f(z)$在$D$上的一个原函数

若$F(z)$是$f(z)$的一个原函数,则$F(z)+C$($C$为任意复常数)也是$f(z)$的原函数,并且它的任意原函数都具有这一形式

$$\quad\\$$

定理11$\quad$设$D$为单连通区域,函数$f(z)$在$D$内解析,则如下变上限积分确定的函数$F(z)$为$f(z)$在$D$上的原函数

$$F(z)=\int_{z_0}^{z}f(\zeta)\text{d}\zeta\qquad z_0,z\in D$$

$\nabla$证

$$
由柯西\text{-}古尔萨定理,此积分与路径无关,因此确定一单值函数F(z)\\
\quad\\
\forall z_1\in D,\exists 邻域V(z_1;\delta)\subset D,对邻域内任意一点z有\\
\quad\\
F(z)-F(z_1)=\int_{z_1}^{z}f(\zeta)\text{d}\zeta\\
\quad\\
取积分路径为直线段[z_1,z],则有\\
\quad\\
\frac{F(z)-F(z_1)}{z-z_1}-f(z_1)=\frac{1}{z-z_1}\int_{[z_1,z]}[f(\zeta)-f(z_1)]\text{d}\zeta\\
\quad\\
由于f(z)在z_1点连续,故\forall \varepsilon>0,\exists \delta_1>0\\
\quad\\
当|z-z_1|<\delta_1时,|f(z)-f(z_1)|<\varepsilon\\
\quad\\
此时\left|\frac{F(z)-F(z_1)}{z-z_1}-f(z_1)\right|\le\frac{1}{|z-z_1|}\int_{[z_1,z]}|f(\zeta)-f(z_1)||\text{d}\zeta|<\varepsilon\\
\quad\\
即F’(z_1)=f(z_1),由z_1任意性知,F’(z)=f(z)\qquad\square
$$

$\quad$

$\quad$证明中$f(z)$的解析性保证单值函数$F(z)$存在,而$F(z)$的可导只用到$f(z)$的连续性

$$\quad\\$$

设$D$为$n+1$连通区域,即$\overline{\mathbb{C}}\backslash D$有$n+1$个连通分支$E_k(0\le k\le n)$,设$\infty\in E_0$,称$E_k$为“洞”,设$\Gamma_j(1\le j\le n)$为$D$内只环绕第$j$个“洞”的可求长简单闭曲线,函数$f(z)$在$D$内解析,记

$$K_j=\int_{\Gamma_j}f(z)\text{d}z\quad 1\le j\le n$$

称$K_j$为全纯微分$f(z)\text{d}z$的周期,则有如下定理

定理12$\quad$设$D$为$n+1$连通区域,函数$f(z)$在$D$内解析,$K_j$为全纯微分$f(z)\text{d}z$的周期$(1\le j\le n)$,则$f(z)$在$D$内有单值原函数的充分必要条件为
$K_j=0(1\le j\le n)$

$\nabla$证
$\quad\\\\$ $\textbf{必要性}$ $$ 设f(z)在D内有原函数F(z),若\gamma为D内可求长曲线\gamma(t)(\alpha\le t\le \beta)\\\\ \quad\\\\ 由引理1,沿\gamma的积分可由沿分段折线P_n的积分逼近\\\\ \quad\\\\ 即\int_{\gamma}f(z)\text{d}z=\lim_{n\to \infty}\int_{P_n}f(z)\text{d}z=F(\gamma(\beta))-F(\gamma(\alpha))\\\\ \quad\\\\ 取\gamma为\Gamma_j即得K_j=0\\\\ \quad\\\\ $$ $\textbf{充分性}$ $$ 若K_j=0(j=1,2,\cdots,n),则对D内任一可求长闭曲线\Gamma有\\\\ \quad\\\\ \int_{\Gamma}f(z)\text{d}z=\sum_{j=1}^{n}n_j\int_{\Gamma_j}f(z)\text{d}z\qquad n_j\in \mathbb{Z}\\\\ \quad\\\\ 即\int_{\Gamma}f(z)\text{d}z=0,积分与路径无关\\\\ \quad\\\\ 故变上限积分\int_{z_0}^{z}f(\zeta)\text{d}\zeta确定D内一单值函数F(z)\\\\ \quad\\\\ 重复上一定理的证明,即得F'(z)=f(z)\qquad\square $$

$$\quad\\$$

定理12也说明,如果有一周期$K_j\neq 0$,则变上限积分确定$D$内的多值函数$F(z)$,此多值函数的导数为单值函数$f(z)$,若$D_1$为$D$内单连通区域,取$z_1\in D_1$,又取$D$内一条连接$z_0,z_1$的曲线$\gamma_0$,则$\displaystyle F(z)=\int_{\gamma_0}f(z)\text{d}z+\int_{z_1}^{z}f(\zeta)\text{d}\zeta$,由定理11,$F(z)$在$D_1$上可取出单值分支,记为$F_1(z)$,$\forall n_j\in \mathbb{Z}$,则函数
$\displaystyle F_1(z)+\sum_{j=1}^{n}n_jK_j$也为$F(z)$在$D_1$上的单值分支,且构成$F(z)$的全部单值分支

事实上设$F_2(z)$为$F(z)$在$D$上的另一单值分支,则
$F_2’(z)-F_1’(z)=f(z)-f(z)=0$,得出$F_2(z)-F_1(z)$在$D_1$上为常数$C$,要确定$C$,只需考察$z_1$点的值,$\displaystyle F_1(z_1)=\int_{\gamma_0}f(\zeta)\text{d}\zeta$,因为$F_2(z)$为$F(z)$单值分支,故存在连接$z_0,z_1$的曲线$\gamma_1$,使$\displaystyle F_2(z_1)=\int_{\gamma_1}f(\zeta)\text{d}\zeta$,因为$\gamma_1+\gamma_0^{-1}$为$D$内闭路,即得$\displaystyle F_2(z_1)-F_1(z_1)=\int_{\gamma_1+\gamma_0^{-1}}f(\zeta)\text{d}\zeta=\sum_{j=1}^{n}n_jK_j$

$$\quad\\$$

定理13$\quad$设$D$为单连通区域,函数$f(z)$在$D$内解析且不为零,则$\text{Log}f(z)$可取出单值分支$g(z)$,即$\displaystyle f(z)=e^{g(z)}$,且$g(z)+2\pi k i(k\in\mathbb{Z})$为$\text{Log}f(z)$的全部单值解析分支

$\nabla$证
$$ 取定z_0\in D和w_0,使f(z_0)=e^{w_0},由f(z)各阶导数存在知f'(z)在D内解析\\\\ \quad\\\\ 又f(z)\neq 0,故f'(z)/f(z)在D内解析,由D为单连通区域知\\\\ \quad\\\\ g(z)=w_0+\int_{z_0}^{z}\frac{f'(\zeta)}{f(\zeta)}\text{d}\zeta为D内的单值解析函数,且g'(z)=\frac{f'(z)}{f(z)},g(z_0)=w_0\\\\ \quad\\\\ 考虑D内解析函数\varphi(z)=f(z)e^{-g(z)},求导得\\\\ \quad\\\\ \varphi'(z)=e^{-g(z)}[f'(z)-f(z)g'(z)]\equiv 0\\\\ \quad\\\\ 故\varphi(z)在D内为常数,由\varphi(z_0)=f(z_0)e^{-w_0}=1得f(z)=e^{g(z)}\\\\ \quad\\\\ 这表明g(z)与g(z)+2k\pi i(k\in \mathbb{Z})为\text{Log}f(z)的单值解析分支\\\\ \quad\\\\ 假设f(z)存在其他单值解析分支g_1(z),即f(z)=e^{g_1(z)}\\\\ \quad\\\\ 则有e^{g_1(z)-g(z)}\equiv 1\\\\ \quad\\\\ 得g_1(z)-g(z)\equiv 2\pi k(z)i,k(z)为D内取整值的连续函数,故k(z)为常数\\\\ \quad\\\\ 这说明g(z)+2k\pi i(k\in \mathbb{Z})为\text{Log}f(z)全部单值解析分支\qquad\square $$

$$\quad\\$$

因为$[f(z)]^\lambda(\lambda\in\mathbb{C})=e^{\lambda\text{Log}f(z)}$,由定理13,$[f(z)]^\lambda$在$D$内也可取出单值解析分支

$$\quad\\$$

Morera定理$\quad$若函数$f(z)$在区域$D$内连续,$\gamma$为$D$内任一可求长简单闭曲线,且$\gamma$所围区域属于$D$,若$f(z)$沿$\gamma$的积分为零,则$f(z)$在$D$内解析

$\quad$

事实上,$\forall z_0\in D$,取其邻域$V(z_0,\delta)\subset D$,由闭路积分为零的条件知$\displaystyle F(z)=\int_{z_0}^{z}f(\zeta)\text{d}\zeta$为$V(z_0,\delta)$内单值函数,由定理11的注知$F’(z)=f(z)$,进而由各阶导数存在定理知$f(z)$在$V(z_0,\delta)$内解析,由$z_0$的任意性知$f(z)$在$D$内解析

$\quad$由引理1,条件$f(z)$沿$\gamma$积分为零,可以改为$f(z)$沿任一三角形$T$的积分为零,这里要求$T$所谓区域属于$D$

$\quad\\$

最大模原理与Schwarz引理

$\quad\\$

若函数$f(z)$在圆$|z-a|<R$内解析,设$\gamma:|z-a|=r(0<r<R)$,由柯西公式有$\displaystyle f(a)=\frac{1}{2\pi i}\int_{\gamma}\frac{f(z)}{z-a}\text{d}z=\frac{1}{2\pi r}\int_{0}^{2\pi r}f(a+re^{i\theta})\text{d}r \theta$,故有

平均值公式$\quad$若函数$f(z)$在闭圆$|z-a|\le R$上解析,则其在圆心的值为其在圆周上值的积分平均,即

$$f(a)=\frac{1}{2\pi}\int_{0}^{2\pi}f(a+Re^{i\theta})\text{d}\theta$$

$$\quad\\$$

最大模原理$\quad$若函数$f(z)$在区域$D$内解析且不为常数,则$|f(z)|$在$D$内取不到其最大值

$\nabla$证

$$
令M=\sup_{z\in D}|f(z)|,若M=+\infty,结论显然成立\\
\quad\\
设M<+\infty,因为f(z)非常数,故有0<M<\infty,令\\
\quad\\
\Omega_1={z\in D:|f(z)|=M}\\
\quad\\
\Omega_2={z\in D:|f(z)|<M}\\
\quad\\
显然\Omega_2为开集,现证\Omega_1为开集\\
\quad\\
设a\in \Omega_1,即|f(a)|=M\\
\quad\\
因为a\in D,故\exists V(a;\delta)\subset D,由平均值公式有,当0<r<\delta 时有\\
\quad\\
f(a)=\frac{1}{2\pi}\int_{0}^{2\pi}f(a+re^{i\theta})\text{d}\theta\\
\quad\\
M=|f(a)|\le \frac{1}{2\pi}\int_{0}^{2\pi}|f(a+re^{i\theta})|\text{d}\theta\\
\quad\\
即\frac{1}{2\pi}\int_{0}^{2\pi}[M-|f(a+re^{i\theta})|]\text{d}\theta\\
\quad\\
由于M\ge |f(a+re^{i\theta})|,f为连续函数,故有M-|f(a+re^{i\theta})|\equiv 0\\
\quad\\
可知V(a;\delta)\subset \Omega,即\Omega_1为开集\\
\quad\\
由于D为连通集,\Omega_1\cap\Omega_2=\varnothing,\Omega_1\cup\Omega_2=D,故\Omega_1,\omega_2中必有一个为空集\\
\quad\\
若\Omega_2=\varnothing,则|f(z)|为常数,可得f(z)为常数,与条件矛盾\\
\quad\\
故\Omega_1=\varnothing,\Omega_2=D,即|f(z)|在D内取不到其最大值\qquad\square\\
$$

$$\quad\\$$

若$D$为有界区域,$f(z)$在$D$内解析且不为常数,在$\overline{D}$上连续,因为$\overline{D}$为紧集,故$|f(z)|$在$\overline{D}$上取到最大值$M$,而由最大模原理,$|f(z)|$在边界上取到最大模,故有

推论3$\quad$设$D$为有界区域,$f(z)$在$D$内解析,在$\overline{D}$上连续,且$f(z)$不为常数,则$|f(z)|$在$\partial D$上取到最大值

$$\quad\\$$

推论4$\quad$设$D$为区域,$f(z)$在$D$内解析且不为常数,若$\forall \zeta\in \partial D$($\zeta$可以是$\infty$点)有

$$\varlimsup_{z\to \zeta}|f(z)|\le M$$

则在$D$内有

$$|f(z)|< M$$

$\nabla$证

$$
令M’=\sup_{z\in D}|f(z)|,只要证M’\le M,由定义,\exists z_n\in D(n=1,2,\cdots),使\\
\quad\\
\lim_{n\to +\infty}|f(z_n)|=M’\\
\quad\\
由\text{Bolzano}定理,存在子序列\{z_{n_k}\},z_{n_k}\to z_0(k\to +\infty)\\
\quad\\
若z_0\in D,则|f(z)|=\lim_{k\to +\infty}|f(z_{n_k})|=M’\\
\quad\\
即|f(z)|在D内取到最大值M’,由最大模原理知|f(z)|\equiv M’,显然M’\le M\\
\quad\\
若z_0\in \partial D(z_0可以为\infty),则由条件得\\
\quad\\
M’=\lim_{k\to +\infty}|f(z_{n_k})|\le \varlimsup_{z\to z_0}|f(z)|\le M\qquad\square
$$

$$\quad\\$$

Schwarz引理$\quad$设函数$f(z)$在$|z|<1$内解析,且满足$f(0)=0,|f(z)|\le 1$,那么在圆$|z|<1$内有

$$|f(z)|\le |z|\qquad|f’(0)|\le 1$$

若$|f(z_0)|=|z_0|\quad 0<|z_0|<1$或$|f’(0)|=1$,则有

$$f(z)=e^{i\alpha}z\qquad \alpha\in \mathbb{R}$$

$\nabla$证

$$
定义函数\varphi(z)=\left\lbrace\begin{array}{l}\displaystyle\frac{f(z)}{z}\quad z\neq 0\\f’(0)\quad z=0\end{array}\right.\\
\quad\\
易知\varphi(z)在0<|z|<1内解析,在|z|<1内连续\\
\quad\\
由最大模原理,只需证\varphi(z)在|z|<1内解析即可得到结论\\
\quad\\
又由莫雷拉定理,只需证\varphi(z)沿|z|<1内任意三角形T的积分为零\\
\quad\\
当原点在T之外及之上,结论显然成立\\
\quad\\
当原点在T之内时,分别连结原点与T的三个顶点,将T分为三个小三角形\\
\quad\\
易知\varphi(z)沿这三个小三角形的积分均为零,故沿T的积分亦为零\\
\quad\\
综上,可知结论成立\qquad\square
$$

$$\quad\\$$

施瓦茨引理表明,若$f(z)$是单位圆到单位圆的解析映照,$z=0$为映照的不动点,则$z$的像点$f(z)$到原点的距离比$z$点到原点的距离近,如果有一点使得二者相等,则$f(z)$为一旋转映照

当前网速较慢或者你使用的浏览器不支持博客特定功能,请尝试刷新或换用Chrome、Firefox等现代浏览器